HBase笔记(持续更新)

2023年2月23日

Hbase读书笔记

版本变迁:
《Hbase原理与实践》读书笔记——1.HBase概述

1、0.94.x:HBase历史上第一个相对稳定的生产线版本,国内最早使用HBase的互联网公司(小米、阿里、网易等)都曾在生产线上大规模使用0.94.x作为服务版本。

2、0.96:实现了很多重大的功能改进,比如BucketCache、MSLAB、MTTR优化等,但也因为功能太多而引入了很多bug,导致生产线上真正投入使用的并不多。

3、0.98:修复了大量的bug,大大提升了系统可用性以及稳定性。不得不说,0.98版本是目前业界公认的HBase历史上最稳定的版本之一。

4、1.0.0:规范了HBase的版本号,此后的版本号都统一遵循semantic versioning语义
《Hbase原理与实践》读书笔记——1.HBase概述

5、1.4.10:目前,HBase社区推荐使用的稳定版本为1.4.10

6、2.x:核心功能包括:大幅度减小GC影响的offheap read path/write path工作,极大提升系统稳定性的Procedure V2框架,支持多租户隔离的RegionServer Group功能,支持大对象存储的MOB功能.

《Hbase原理与实践》读书笔记——1.HBase概述

Hbase逻辑视图

《Hbase原理与实践》读书笔记——1.HBase概述

BigTable论文中称BigTable为"sparse,distributed, persistent multidimensional sorted map"——稀疏的、分布式的、持久性的、多维的以及排序的

逻辑视图中行"com.cnn.www"以及列"anchor:cnnsi.com"对应的数值"CNN"实际上在HBase中存储为如下KV结构:
{“com.cnn.www”, “anchor”, “cnnsi.com”, “put”, “t9”} -> “CNN”

特性解释:
1、多维:Hbase中的map的key是一个复合数据结构,由多维元素构成,包括rowkey、column family、column qualifier、type以及timestamp。

2、稀疏:比如逻辑表中行"com.example.www"可以看出,整整一行仅有一列(people:author)有值,其他列都为空值。对于HBase来说,空值不需要任何填充,从而节省了大量的空间,这也是hbase的列可以无限扩展的一个重要条件。

3、排序:构成HBase的KV在同一个文件中都是有序的,但规则并不是仅仅按照rowkey排序,而是按照KV中的key进行排序——先比较rowkey,rowkey小的排在前面;如果rowkey相同,再比较column,即column family:qualifier,column小的排在前面;如果column还相同,再比较时间戳timestamp,即版本信息,timestamp大的排在前面。这样的多维元素排序规则对于提升HBase的读取性能至关重要

4、分布式:构成HBase的所有Map并不集中在某台机器上,而是分布在整个集群中。

Hbase物理视图

HBase中的数据是按照列簇存储的,即将数据按照列簇分别存储在不同的目录中。比如列簇anchor的所有数据存储在一起:
《Hbase原理与实践》读书笔记——1.HBase概述

行式存储、列式存储、列簇式存储

一、行式存储:行式存储系统会将一行数据存储在一起,一行数据写完之后再接着写下一行,最典型的如MySQL这类关系型数据库
《Hbase原理与实践》读书笔记——1.HBase概述

优势:
1、获取一行数据非常高效,仅适合处理OLTP类型的负载

劣势:
1、读取表指定列对应的数据,由于会先读取一行行数据,再在每一行数据中待查找目标列,引用了大量无用列的信息,从而导致大量内存占用,不擅长OLAP这类分析型负载。

二、列式存储:列式存储理论上会将一列数据存储在一起,不同列的数据分别集中存储,最典型的如Kudu、Parquet on HDFS等系统(文件格式)。

《Hbase原理与实践》读书笔记——1.HBase概述

优势:
1、对于只查找某些列数据的请求非常高效,只需要连续读出所有待查目标列,然后遍历处理即可。
2、因为同一列的数据通常都具有相同的数据类型,因此列式存储具有天然的高压缩特性。

劣势:
1、对于获取一行的请求就不够高效了,需要多次IO读多个列数据,最终合并得到一行数据。

三、列簇式存储:介于行式存储和列式存储之间,可以通过不同的设计思路在行式存储和列式存储两者之间相互切换,比如
1、一张表只设置一个列簇,这个列簇包含所有用户的列。HBase中一个列簇的数据是存储在一起的,因此这种设计模式就等同于行式存储
2、一张表设置大量列簇,每个列簇下仅有一列,这种设计模式就等同于列式存储

Hbase体系架构

Hbase是典型的Master-Slaver架构,系统中有一个管理集群的Master节点以及大量实际服务用户读写的RegionServer节点。除此之外,HBase中所有数据最终都存储在HDFS系统中,这与BigTable实际数据存储在GFS中相对应;系统中还有一个ZooKeeper节点,协助Master对集群进行管理。
《Hbase原理与实践》读书笔记——1.HBase概述

Hbase客户端

HBase客户端(Client)提供了Shell命令行接口(支持所有常见的DML操作以及DDL操作)、原生Java API编程接口、Thrift/REST API编程接口以及MapReduce编程接口。

HBase客户端访问数据行之前,首先需要通过元数据表定位目标数据所在RegionServer,之后才会发送请求到该RegionServer。同时这些元数据会被缓存在客户端本地,以方便之后的请求访问。如果集群RegionServer发生宕机或者执行了负载均衡等,从而导致数据分片发生迁移,客户端需要重新请求最新的元数据并缓存在本地。

Zookeeper

ZooKeeper(ZK)也是Apache Hadoop的一个***项目,主要用于协调管理分布式应用程序。在HBase系统中,主要有以下用途:

实现Master高可用:通常情况下系统中只有一个Master工作,一旦ActiveMaster由于异常宕机,ZooKeeper会检测到该宕机事件,并通过一定机制选举出新的Master,保证系统正常运转。

管理系统核心元数据:比如,管理当前系统中正常工作的RegionServer集合,保存系统元数据表hbase:meta所在的RegionServer地址等。

参与RegionServer宕机恢复:ZooKeeper通过心跳可以感知到RegionServer是否宕机,并在宕机后通知Master进行宕机处理。

实现分布式表锁:HBase中对一张表进行各种管理操作(比如alter操作)需要先加表锁,防止其他用户对同一张表进行管理操作,造成表状态不一致。

Master

Master主要负责HBase系统的各种管理工作:
处理用户的各种管理请求,包括建表、修改表、权限操作、切分表、合并数据分片以及Compaction等。

管理集群中所有RegionServer,包括RegionServer中Region的负载均衡、RegionServer的宕机恢复以及Region的迁移等。

清理过期日志以及文件,Master会每隔一段时间检查HDFS中HLog是否过期、HFile是否已经被删除,并在过期之后将其删除。

RegionServer

RegionServer主要用来响应用户的IO请求,是HBase中最核心的模块,由WAL(HLog)、BlockCache以及多个Region构成。

WAL(HLog):HLog在HBase中有两个核心作用
用于实现数据的高可靠性,HBase数据随机写入时,并非直接写入HFile数据文件,而是先写入缓存,再异步刷新落盘。为了防止缓存数据丢失,数据写入缓存之前需要首先顺序写入HLog,这样,即使缓存数据丢失,仍然可以通过HLog日志恢复
用于实现HBase集群间主从复制,通过回放主集群推送过来的HLog日志实现主从复制。

BlockCache:HBase系统中的读缓存。客户端从磁盘读取数据之后通常会将数据缓存到系统内存中,后续访问同一行数据可以直接从内存中获取而不需要访问磁盘。

对于带有大量热点读的业务请求来说,缓存机制会带来极大的性能提升。BlockCache缓存对象是一系列Block块,一个Block默认为64K,由物理上相邻的多个KV数据组成。

Region:数据表的一个分片,当数据表大小超过一定阈值就会“水平切分”,分裂为两个Region。Region是集群负载均衡的基本单位。通常一张表的Region会分布在整个集群的多台RegionServer上,一个RegionServer上会管理多个Region,当然,这些Region一般来自不同的数据表。

一个Region由一个或者多个Store构成,Store的个数取决于表中列簇(column family)的个数。HBase中,每个列簇的数据都集中存放在一起形成一个存储单元Store,因此建议将具有相同IO特性的数据设置在同一个列簇中

每个Store由一个MemStore和一个或多个HFile组成。MemStore称为写缓存,用户写入数据时首先会写到MemStore,当MemStore写满之后(缓存数据超过阈值,默认128M)系统会异步地将数据flush成一个HFile文件。当HFile文件数超过一定阈值之后系统将会执行Compact操作,将这些小文件通过一定策略合并成一个或多个大文件。

HDFS

HBase底层依赖HDFS组件存储实际数据,包括用户数据文件、HLog日志文件等最终都会写入HDFS落盘。HDFS的数据默认三副本存储策略可以有效保证数据的高可靠性。HBase内部封装了一个名为DFSClient的HDFS客户端组件,负责对HDFS的实际数据进行读写访问。

HBase系统特性

容量巨大

良好的可扩展性

稀疏性:HBase支持大量稀疏存储,即允许大量列值为空,并不占用任何存储空间。这与传统数据库不同,传统数据库对于空值的处理要占用一定的存储空间,这会造成一定程度的存储空间浪费。因此可以使用HBase存储多至上百万列的数据,即使表中存在大量的空值,也不需要任何额外空间。

高性能

多版本

支持过期

Hadoop原生支持

HBase本身不支持很复杂的聚合运算(如Join、GroupBy等)。

HBase本身并没有实现二级索引功能

HBase原生不支持全局跨行事务,只支持单行事务模型。同样,可以使用Phoenix提供的全局事务模型组件来弥补HBase的这个缺陷。


Hbase总结

1、HBase 简介

HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据、实现数据分布式存储提供可靠的方案。从功能上来讲,HBase不折不扣是一个数据库,与我们熟悉的Oracle、MySQL、MSSQL等一样,对外提供数据的存储和读取服务。而从应用的角度来说,HBase与一般的数据库又有所区别,HBase本身的存取接口相当简单,不支持复杂的数据存取,更不支持SQL等结构化的查询语言;HBase也没有除了rowkey以外的索引,所有的数据分布和查询都依赖rowkey。所以,HBase在表的设计上会有很严格的要求。架构上,HBase是分布式数据库的典范,这点比较像MongoDB的sharding模式,能根据键值的大小,把数据分布到不同的存储节点上,MongoDB根据configserver来定位数据落在哪个分区上,HBase通过访问Zookeeper来获取-ROOT-表所在地址,通过-ROOT-表得到相应.META.表信息,从而获取数据存储的region位置。

2、架构

上面提到,HBase是一个分布式的架构,除去底层存储的HDFS外,HBase本身从功能上可以分为三块:Zookeeper群、Master群和RegionServer群。

  • Zookeeper群:HBase集群中不可缺少的重要部分,主要用于存储Master地址、协调Master和RegionServer等上下线、存储临时数据等等。
  • Master群:Master主要是做一些管理操作,如:region的分配,手动管理操作下发等等,一般数据的读写操作并不需要经过Master集群,所以Master一般不需要很高的配置即可。
  • RegionServer群:RegionServer群是真正数据存储的地方,每个RegionServer由若干个region组成,而一个region维护了一定区间rowkey值的数据,整个结构如下图:
  • HBase 原理、设计与优化实践

HBase结构图

上图中,Zookeeper(简称ZK)是一个集群,通常有奇数个ZK服务组成。Master为了服务可用性,也建议部署成集群方式,因为Master是整个管理操作的发起者,如果Master一旦发生意外停机,整个集群将会无法进行管理操作,所以Master也必须有多个,当然多个Master也有主从之分,如何区分哪个是主,哪个是从?关键看哪个Master能竞争到ZK上对应Master目录下的锁,持有该目录锁的Master为主Master,其他从Master轮询竞争该锁,所以一旦主Master发生意外停机,从Master很快会因为竞争到Master文件夹上的锁而接管服务。
RegionServer(简称RS)在非Replication模式下,整个系统中都是唯一的,也就是说,在整个非Replication的HBase集群中,每台RS上保存的数据都不一样,所以相对于前面两者,该模式下的RS并不是高可用的,至少RS可能存在单点故障的问题,但是由于HBase内部数据分region存储和region可以迁移的机制,RS服务的单点故障可能会在极小代价下很快恢复,但是一旦停掉的RS上有-ROOT-或者.META.表的region,那后果还是比较严重,因为数据节点的RS停机,只会在短时间内影响该台RS上的region不可访问,等到region迁移完成后即可恢复,如果是-ROOT-、.META.所在的RS停机,整个HBase的新的求情都将受到影响,因为需要通过.META.表来路由,从而寻找到region所在RS的地址。

3、数据组织

整个架构中,ZK用于服务协调和整个集群运行过程中部分信息的保存和-ROOT-表地址定位,Master用于集群内部管理,所以剩下的RS主要用于处理数据。
RS是处理数据的主要场所,那么在RS内部的数据是怎么分布的?其实RS本身只是一个容器,其定义了一些功能线程,比如:数据合并线程(compact thread)、storeFile分割线程(split thread)等等。容器中的主要对象就是region,region是一个表根据自身rowkey范围划分的一部分,一个表可以被划分成若***分,也就是若干个region,region可以根据rowkey范围不同而被分布在不同的RS上(当然也可以在同一个RS上,但不建议这么做)。一个RS上可以包含多个表的region,也可以只包含一个表的部分region,RS和表是两个不同的概念。
这里还有一个概念——列簇。对HBase有一些了解的人,或多或少听说过:HBase是一个列式存储的数据库,而这个列式存储中的列,其实是区别于一般数据库的列,这里的列的概念,就是列簇,列簇,顾名思义就是很多列的集合,而在数据存储上来讲,不同列簇的数据,一定是分开存储的,即使是在同一个region内部,不同的列簇也存储在不同的文件夹中,这样做的好处是,一般我们定义列簇的时候,通常会把类似的数据放入同一个列簇,不同的列簇分开存储,有利于数据的压缩,并且HBase本身支持多种压缩方式。

4、原理

前面介绍了HBase的一般架构,我们知道了HBase有ZK、Master和RS等组成,本节我们来介绍下HBase的基本原理,从数据访问、RS路由到RS内部缓存、数据存储和刷写再到region的合并和拆分等等功能。

4.1 RegionServer定位

访问HBase通过HBase客户端(或API)进行,整个HBase提供给外部的地址,其实是ZK的入口,前面也介绍了,ZK中有保存-ROOT-所在的RS地址,从-ROOT-表可以获取.META.表信息,根据.META.表可以获取region在RS上的分布,整个region寻址过程大致如下:

HBase 原理、设计与优化实践

RS定位过程

  1. 首先,Client通过访问ZK来请求目标数据的地址。
  2. ZK中保存了-ROOT-表的地址,所以ZK通过访问-ROOT-表来请求数据地址。
  3. 同样,-ROOT-表中保存的是.META.的信息,通过访问.META.表来获取具体的RS。
  4. .META.表查询到具体RS信息后返回具体RS地址给Client。
  5. Client端获取到目标地址后,然后直接向该地址发送数据请求。

上述过程其实是一个三层索引结构,从ZK获取-ROOT-信息,再从-ROOT-获取.META.表信息,最后从.META.表中查到RS地址后缓存。这里有几个问题:

  • 既然ZK中能保存-ROOT-信息,那么为什么不把.META.信息直接保存在ZK中,而需要通过-ROOT-表来定位?
  • Client查找到目标地址后,下一次请求还需要走ZK —> -ROOT- —> .META.这个流程么?

先来回答第一个问题:为什么不直接把.META.表信息直接保存到ZK中?主要是为了保存的数据量考虑,ZK中不宜保存大量数据,而.META.表主要是保存Region和RS的映射信息,region的数量没有具体约束,只要在内存允许的范围内,region数量可以有很多,如果保存在ZK中,ZK的压力会很大。所以,通过一个-ROOT-表来转存到RS中是一个比较理想的方案,相比直接保存在ZK中,也就多了一层-ROOT-表的查询,对性能来说影响不大。
第二个问题:每次访问都需要走ZK –> -ROOT- —> .META.的流程么?当然不需要,Client端有缓存,第一次查询到相应region所在RS后,这个信息将被缓存到Client端,以后每次访问都直接从缓存中获取RS地址即可。当然这里有个意外:访问的region若果在RS上发生了改变,比如被balancer迁移到其他RS上了,这个时候,通过缓存的地址访问会出现异常,在出现异常的情况下,Client需要重新走一遍上面的流程来获取新的RS地址。总体来说,region的变动只会在极少数情况下发生,一般变动不会很大,所以在整个集群访问过程中,影响可以忽略。

4.2 Region数据写入

HBase通过ZK —> -ROOT- —> .META.的访问获取RS地址后,直接向该RS上进行数据写入操作,整个过程如下图:

HBase 原理、设计与优化实践

RegionServer数据操作过程

Client通过三层索引获得RS的地址后,即可向指定RS的对应region进行数据写入,HBase的数据写入采用WAL(write ahead log)的形式,先写log,后写数据。HBase是一个append类型的数据库,没有关系型数据库那么复杂的操作,所以记录HLog的操作都是简单的put操作(delete/update操作都被转化为put进行)

4.3 HLog

4.3.1 HLog写入

HLog是HBase实现WAL方式产生的日志信息,其内部是一个简单的顺序日志,每个RS上的region都共享一个HLog,所有对于该RS上的region数据写入都被记录到该HLog中。HLog的主要作用就是在RS出现意外崩溃的时候,可以尽量多的恢复数据,这里说是尽量多,因为在一般情况下,客户端为了提高性能,会把HLog的auto flush关掉,这样HLog日志的落盘全靠操作系统保证,如果出现意外崩溃,短时间内没有被fsync的日志会被丢失。

4.3.2 HLog过期

HLog的大量写入会造成HLog占用存储空间会越来越大,HBase通过HLog过期的方式进行HLog的清理,每个RS内部都有一个HLog监控线程在运行,其周期可以通过hbase.master.cleaner.interval进行配置。
HLog在数据从memstore flush到底层存储上后,说明该段HLog已经不再被需要,就会被移动到.oldlogs这个目录下,HLog监控线程监控该目录下的HLog,当该文件夹下的HLog达到hbase.master.logcleaner.ttl设置的过期条件后,监控线程立即删除过期的HLog。

4.4 Memstore

4.4.1 数据存储

memstore是region内部缓存,其大小通过HBase参数hbase.hregion.memstore.flush.size进行配置。RS在写完HLog以后,数据写入的下一个目标就是region的memstore,memstore在HBase内部通过LSM-tree结构组织,所以能够合并大量对于相同rowkey上的更新操作。
正是由于memstore的存在,HBase的数据写入都是异步的,而且性能非常不错,写入到memstore后,该次写入请求就可以被返回,HBase即认为该次数据写入成功。这里有一点需要说明,写入到memstore中的数据都是预先按照rowkey的值进行排序的,这样有利于后续数据查找。

4.4.2 数据刷盘

memstore中的数据在一定条件下会进行刷写操作,使数据持久化到相应的存储设备上,触发memstore刷盘的操作有多种不同的方式如下图:

HBase 原理、设计与优化实践

Memstore刷写流程

以上1,2,3都可以触发memstore的flush操作,但是实现的方式不同:

  • 1通过全局内存控制,触发memstore刷盘操作。memstore整体内存占用上限通过参数hbase.regionserver.global.memstore.upperLimit进行设置,当然在达到上限后,memstore的刷写也不是一直进行,在内存下降到hbase.regionserver.global.memstore.lowerLimit配置的值后,即停止memstore的刷盘操作。这样做,主要是为了防止长时间的memstore刷盘,会影响整体的性能。
  • 在该种情况下,RS中所有region的memstore内存占用都没达到刷盘条件,但整体的内存消耗已经到一个非常危险的范围,如果持续下去,很有可能造成RS的OOM,这个时候,需要进行memstore的刷盘,从而释放内存。
  • 2手动触发memstore刷盘操作
  • HBase提供API接口,运行通过外部调用进行memstore的刷盘
  • 3 memstore上限触发数据刷盘
  • 前面提到memstore的大小通过hbase.hregion.memstore.flush.size进行设置,当region中memstore的数据量达到该值时,会自动触发memstore的刷盘操作。

4.4.3 刷盘影响

memstore在不同的条件下会触发数据刷盘,那么整个数据在刷盘过程中,对region的数据写入等有什么影响?memstore的数据刷盘,对region的直接影响就是:在数据刷盘开始到结束这段时间内,该region上的访问都是被拒绝的,这里主要是因为在数据刷盘结束时,RS会对改region做一个snapshot,同时HLog做一个checkpoint操作,通知ZK哪些HLog可以被移到.oldlogs下。从前面图上也可以看到,在memstore写盘开始,相应region会被加上UpdateLock锁,写盘结束后该锁被释放。

4.5 StoreFile

memstore在触发刷盘操作后会被写入底层存储,每次memstore的刷盘就会相应生成一个存储文件HFile,storeFile即HFile在HBase层的轻量级分装。数据量的持续写入,造成memstore的频繁flush,每次flush都会产生一个HFile,这样底层存储设备上的HFile文件数量将会越来越多。不管是HDFS还是Linux下常用的文件系统如Ext4、XFS等,对小而多的文件上的管理都没有大文件来的有效,比如小文件打开需要消耗更多的文件句柄;在大量小文件中进行指定rowkey数据的查询性能没有在少量大文件中查询来的快等等。

4.6 Compact

大量HFile的产生,会消耗更多的文件句柄,同时会造成RS在数据查询等的效率大幅度下降,HBase为解决这个问题,引入了compact操作,RS通过compact把大量小的HFile进行文件合并,生成大的HFile文件。
RS上的compact根据功能的不同,可以分为两种不同类型,即:minor compact和major compact。

  • Minor Compact

minor compact又叫small compact,在RS运行过程中会频繁进行,主要通过参数hbase.hstore.compactionThreshold进行控制,该参数配置了HFile数量在满足该值时,进行minor compact,minor compact只选取region下部分HFile进行compact操作,并且选取的HFile大小不能超过hbase.hregion.max.filesize参数设置。

  • Major Compact

相反major compact也被称之为large compact,major compact会对整个region下相同列簇的所有HFile进行compact,也就是说major compact结束后,同一个列簇下的HFile会被合并成一个。major compact是一个比较长的过程,对底层I/O的压力相对较大。
major compact除了合并HFile外,另外一个重要功能就是清理过期或者被删除的数据。前面提到过,HBase的delete操作也是通过append的方式写入,一旦某些数据在HBase内部被删除了,在内部只是被简单标记为删除,真正在存储层面没有进行数据清理,只有通过major compact对HFile进行重组时,被标记为删除的数据才能被真正的清理。
compact操作都有特定的线程进行,一般情况下不会影响RS上数据写入的性能,当然也有例外:在compact操作速度跟不上region中HFile增长速度时,为了安全考虑,RS会在HFile达到一定数量时,对写入进行锁定操作,直到HFile通过compact降到一定的范围内才释放锁。

4.7 Split

compact将多个HFile合并单个HFile文件,随着数据量的不断写入,单个HFile也会越来越大,大量小的HFile会影响数据查询性能,大的HFile也会,HFile越大,相对的在HFile中搜索的指定rowkey的数据花的时间也就越长,HBase同样提供了region的split方案来解决大的HFile造成数据查询时间过长问题。
一个较大的region通过split操作,会生成两个小的region,称之为Daughter,一般Daughter中的数据是根据rowkey的之间点进行切分的,region的split过程大致如下图:

HBase 原理、设计与优化实践

region split流程

  1. region先更改ZK中该region的状态为SPLITING。
  2. Master检测到region状态改变。
  3. region会在存储目录下新建.split文件夹用于保存split后的daughter region信息。
  4. Parent region关闭数据写入并触发flush操作,保证所有写入Parent region的数据都能持久化。
  5. 在.split文件夹下新建两个region,称之为daughter A、daughter B。
  6. Daughter A、Daughter B拷贝到HBase根目录下,形成两个新的region。
  7. Parent region通知修改.META.表后下线,不再提供服务。
  8. Daughter A、Daughter B上线,开始向外提供服务。
  9. 如果开启了balance_switch服务,split后的region将会被重新分布。

上面1 ~ 9就是region split的整个过程,split过程非常快,速度基本会在秒级内,那么在这么快的时间内,region中的数据怎么被重新组织的?
其实,split只是简单的把region从逻辑上划分成两个,并没有涉及到底层数据的重组,split完成后,Parent region并没有被销毁,只是被做下线处理,不再对外部提供服务。而新产生的region Daughter A和Daughter B,内部的数据只是简单的到Parent region数据的索引,Parent region数据的清理在Daughter A和Daughter B进行major compact以后,发现已经没有到其内部数据的索引后,Parent region才会被真正的清理。

5、HBase设计

HBase是一个分布式数据库,其性能的好坏主要取决于内部表的设计和资源的分配是否合理。

5.1 Rowkey设计

rowkey是HBase实现分布式的基础,HBase通过rowkey范围划分不同的region,分布式系统的基本要求就是在任何时候,系统的访问都不要出现明显的热点现象,所以rowkey的设计至关重要,一般我们建议rowkey的开始部分以hash或者MD5进行散列,尽量做到rowkey的头部是均匀分布的。禁止采用时间、用户id等明显有分段现象的标志直接当作rowkey来使用。

5.2 列簇设计

HBase的表设计时,根据不同需求有不同选择,需要做在线查询的数据表,尽量不要设计多个列簇,我们知道,不同的列簇在存储上是被分开的,多列簇设计会造成在数据查询的时候读取更多的文件,从而消耗更多的I/O。

5.3 TTL设计

选择合适的数据过期时间也是表设计中需要注意的一点,HBase中允许列簇定义数据过期时间,数据一旦超过过期时间,可以被major compact进行清理。大量无用历史数据的残余,会造成region体积增大,影响查询效率。

5.4 Region设计

一般地,region不宜设计成很大,除非应用对阶段性性能要求很多,但是在将来运行一段时间可以接受停服处理。region过大会导致major compact调用的周期变长,而单次major compact的时间也相应变长。major compact对底层I/O会造成压力,长时间的compact操作可能会影响数据的flush,compact的周期变长会导致许多删除或者过期的数据不能被及时清理,对数据的读取速度等都有影响。
相反,小的region意味着major compact会相对频繁,但是由于region比较小,major compact的相对时间较快,而且相对较多的major compact操作,会加速过期数据的清理。
当然,小region的设计意味着更多的region split风险,region容量过小,在数据量达到上限后,region需要进行split来拆分,其实split操作在整个HBase运行过程中,是被不怎么希望出现的,因为一旦发生split,涉及到数据的重组,region的再分配等一系列问题。所以我们在设计之初就需要考虑到这些问题,尽量避免region的运行过程中发生split。
HBase可以通过在表创建的时候进行region的预分配来解决运行过程中region的split产生,在表设计的时候,预先分配足够多的region数,在region达到上限前,至少有部分数据会过期,通过major compact进行清理后, region的数据量始终维持在一个平衡状态。
region数量的设计还需要考虑内存上的限制,通过前面的介绍我们知道每个region都有memstore,memstore的数量与region数量和region下列簇的数量成正比,一个RS下memstore内存消耗:

Memory = memstore大小 region数量 列簇数量

如果不进行前期数据量估算和region的预分配,通过不断的split产生新的region,容易导致因为内存不足而出现OOM现象。

6、优化背景与历史现状

Datastream一直以来在使用HBase分流日志,每天的数据量很大,日均大概在80亿条,10TB的数据。对于像Datastream这种数据量巨大、对写入要求非常高,并且没有复杂查询需求的日志系统来说,选用HBase作为其数据存储平台,无疑是一个非常不错的选择。

HBase是一个相对较复杂的分布式系统,并发写入的性能非常高。然而,分布式系统从结构上来讲,也相对较复杂,模块繁多,各个模块之间也很容易出现一些问题,所以对像HBase这样的大型分布式系统来说,优化系统运行,及时解决系统运行过程中出现的问题也变得至关重要。正所谓:“你”若安好,便是晴天;“你”若有恙,我便没有星期天。

HBase交接到我们团队手上时,已经在线上运行有一大段时间了,期间也偶尔听到过系统不稳定的、时常会出现一些问题的言论,但我们认为:一个能被大型互联网公司广泛采用的系统(包括Facebook,twitter,淘宝,小米等),其在性能和可用性上是毋庸置疑的,何况像Facebook这种公司,是在经过严格选型后,放弃了自己开发的Cassandra系统,用HBase取而代之。既然这样,那么,HBase的不稳定、经常出问题一定有些其他的原因,我们所要做的,就是找出这些HBase的不稳定因素,还HBase一个“清白”。“查案”之前,先来简单回顾一下我们接手HBase时的现状(我们运维着好几个HBase集群,这里主要介绍问题最多那个集群的调优):

名称 数量 备注
服务器数量 17 配置不同,HBase、HDFS都部署在这些机器上
表数量 30+ 只有部分表的数据量比较大,其他基本没多少数据
Region**数量** 600+ 基本上都是数据量较大的表划分的region较多
请求量 50000+ 服务器请求分布极其不均匀

应用反应经常会过段时间出现数据写入缓慢,导致应用端数据堆积现象,是否可以通过增加机器数量来解决?

其实,那个时候,我们本身对HBase也不是很熟悉,对HBase的了解,也仅仅在做过一些测试,了解一些性能,对内部结构,实现原理之类的基本上都不怎么清楚。于是刚开始几天,各种问题,每天晚上拉着一男一起摸索,顺利的时候,晚上8,9点就可以暂时搞定线上问题,更多的时候基本要到22点甚至更晚(可能那个时候流量也下去了),通过不断的摸索,慢慢了解HBase在使用上的一些限制,也就能逐渐解决这一系列过程中发现的问题。后面挑几个相对比较重要,效果较为明显的改进点,做下简单介绍。

7、调优

首先根据目前17台机器,50000+的QPS,并且观察磁盘的I/O利用率和CPU利用率都相当低来判断:当前的请求数量根本没有达到系统的性能瓶颈,不需要新增机器来提高性能。如果不是硬件资源问题,那么性能的瓶颈究竟是什么?

7.1 Rowkey设计问题

7.1.1 现象

打开HBase的Web端,发现HBase下面各个RegionServer的请求数量非常不均匀,第一个想到的就是HBase的热点问题,具体到某个具体表上的请求分布如下:

HBase 原理、设计与优化实践

HBase表请求分布

上面是HBase下某张表的region请求分布情况,从中我们明显可以看到,部分region的请求数量为0,而部分的请求数量可以上百万,这是一个典型的热点问题。

7.1.2 原因

HBase出现热点问题的主要原因无非就是rowkey设计的合理性,像上面这种问题,如果rowkey设计得不好,很容易出现,比如:用时间戳生成rowkey,由于时间戳在一段时间内都是连续的,导致在不同的时间段,访问都集中在几个RegionServer上,从而造成热点问题。

7.1.3 解决

知道了问题的原因,对症下药即可,联系应用修改rowkey规则,使rowkey数据随机均匀分布,效果如下:

HBase 原理、设计与优化实践

Rowkey重定义后请求分布

7.1.4 建议

对于HBase来说,rowkey的范围划定了RegionServer,每一段rowkey区间对应一个RegionServer,我们要保证每段时间内的rowkey访问都是均匀的,所以我们在设计的时候,尽量要以hash或者md5等开头来组织rowkey。

编者注:

如果业务需求是按时间范围 scan/最左前缀 批量查询呢?此时hash或者md5虽然解决了 Region 数据热点问题,但同时查询效率下降,可以思考下\这种场景**如何来优化呢?**

7.2 Region重分布

7.2.1 现象

HBase的集群是在不断扩展的,分布式系统的最大好处除了性能外,不停服横向扩展也是其中之一,扩展过程中有一个问题:每次扩展的机器的配置是不一样的,一般,后面新加入的机器性能会比老的机器好,但是后面加入的机器经常被分配很少的region,这样就造成了资源分布不均匀,随之而来的就是性能上的损失,如下:

HBase 原理、设计与优化实践

HBase各个RegionServer请求

上图中我们可以看到,每台RegionServer上的请求极为不均匀,多的好几千,少的只有几十

7.2.2 原因

资源分配不均匀,造成部分机器压力较大,部分机器负载较低,并且部分Region过大过热,导致请求相对较集中。

7.2.3 解决

迁移部分老的RegionServer上的region到新加入的机器上,使每个RegionServer的负载均匀。通过split切分部分较大region,均匀分布热点region到各个RegionServer上。

HBase 原理、设计与优化实践

HBase region请求分布

对比前后两张截图我们可以看到,Region总数量从1336增加到了1426,而增加的这90个region就是通过split切分大的region得到的。而对region重新分布后,整个HBase的性能有了大幅度提高。

7.2.4 建议

Region迁移的时候不能简单开启自动balance,因为balance主要的问题是不会根据表来进行balance,HBase的自动balance只会根据每个RegionServer上的Region数量来进行balance,所以自动balance可能会造成同张表的region会被集中迁移到同一个台RegionServer上,这样就达不到分布式的效果。

基本上,新增RegionServer后的region调整,可以手工进行,尽量使表的Region都平均分配到各个RegionServer上,另外一点,新增的RegionServer机器,配置最好与前面的一致,否则资源无法更好利用。

对于过大,过热的region,可以通过切分的方法生成多个小region后均匀分布(注意:region切分会触发major compact操作,会带来较大的I/O请求,请务必在业务低峰期进行)

7.3 HDFS写入超时

7.3.1 现象

HBase写入缓慢,查看HBase日志,经常有慢日志如下:

WARN org.apache.hadoop.ipc.HBaseServer- (responseTooSlow): {“processingtimems”:36096, “call”:”multi([email protected]), rpc version=1, client version=29, methodsFingerPrint=1891768260″, “client”:”xxxx.xxx.xxx.xxxx:44367″, “starttimems”:1440239670790, “queuetimems”:42081, “class”:”HRegionServer”, “responsesize”:0, “method”:”multi”}

并且伴有HDFS创建block异常如下:

INFO org.apache.hadoop.hdfs.DFSClient – Exception in createBlockOutputStream

org.apache.hadoop.hdfs.protocol.HdfsProtoUtil.vintPrefixed(HdfsProtoUtil.java:171)

org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.createBlockOutputStream(DFSOutputStream.java:1105)

org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.nextBlockOutputStream(DFSOutputStream.java:1039)

org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:487)

一般地,HBase客户端的写入到RegionServer下某个region的memstore后就返回,除了网络外,其他都是内存操作,应该不会有长达30多秒的延迟,外加HDFS层抛出的异常,我们怀疑很可能跟底层数据存储有关。

7.3.2 原因

定位到可能是HDFS层出现了问题,那就先从底层开始排查,发现该台机器上10块盘的空间利用率都已经达到100%。按理说,作为一个成熟的分布式文件系统,对于部分数据盘满的情况,应该有其应对措施。的确,HDFS本身可以设置数据盘预留空间,如果部分数据盘的预留空间小于该值时,HDFS会自动把数据写入到另外的空盘上面,那么我们这个又是什么情况?

最终通过多方面的沟通确认,发现了主要原因:我们这批机器,在上线前SA已经经过处理,每块盘默认预留100G空间,所以当通过df命令查看盘使用率为100%时,其实盘还有100G的预留空间,而HDFS层面我们配置的预留空间是50G,那么问题就来了:HDFS认为盘还有100G空间,并且多于50G的预留,所以数据可以写入本地盘,但是系统层面却禁止了该写入操作,从而导致数据写入异常。

7.3.3 解决

解决的方法可以让SA释放些空间出来便于数据写入。当然,最直接有效的就是把HDFS的预留空间调整至100G以上,我们也正是这样做的,通过调整后,异常不再出现,HBase层面的slow log也没有再出现。同时我们也开启了HDFS层面的balance,使数据自动在各个服务器之间保持平衡。

7.3.4 建议

磁盘满了导致的问题很难预料,HDFS可能会导致部分数据写入异常,MySQL可能会出现直接宕机等等,所以最好的办法就是:不要使盘的利用率达到100%。

7.4 网络拓扑

7.4.1 现象

通过rowkey调整,HDFS数据balance等操作后,HBase的确稳定了许多,在很长一段时间都没有出现写入缓慢问题,整体的性能也上涨了很多。但时常会隔一段时间出现些slow log,虽然对整体的性能影响不大,但性能上的抖动还是很明显。

7.4.2 原因

由于该问题不经常出现,对系统的诊断带来不小的麻烦,排查了HBase层和HDFS层,几乎一无所获,因为在大多数情况下,系统的吞吐量都是正常的。通过脚本收集RegionServer所在服务器的系统资源信息,也看不出问题所在,最后怀疑到系统的物理拓扑上,HBase集群的最大特点是数据量巨大,在做一些操作时,很容易把物理机的千兆网卡都吃满,这样如果网络拓扑结构存在问题,HBase的所有机器没有部署在同一个交换机上,上层交换机的进出口流量也有可能存在瓶颈。网络测试还是挺简单的,直接ping就可以,我们得到以下结果:共17台机器,只有其中一台的延迟存在问题,如下:

HBase 原理、设计与优化实践

网络延迟测试:Ping结果

同一个局域网内的机器,延迟达到了毫秒级别,这个延迟是比较致命的,因为分布式存储系统HDFS本身对网络有要求,HDFS默认3副本存在不同的机器上,如果其中某台机器的网络存在问题,这样就会影响到该机器上保存副本的写入,拖慢整个HDFS的写入速度。

7.4.3 解决

网络问题,联系机房解决,机房的反馈也验证了我们的想法:由于HBase的机器后面进行了扩展,后面加入的机器有一台跟其他机器不在同一个交换机下,而这台机器正是我们找出的有较大ping延时这台,整个HBase物理结构如下:

HBase 原理、设计与优化实践

HBase物理拓扑结构

跟机房协调,调整机器位置,使所有的HBase机器都位于同一个交换机下,问题迎刃而解。

7.4.4 建议

对于分布式大流量的系统,除了系统本身,物理机的部署和流量规划也相当重要,尽量使集群中所有的机器位于相同的交换机下(有容灾需求的应用除外),集群较大,需要跨交换机部署时,也要充分考虑交换机的出口流量是否够用,网络硬件上的瓶颈诊断起来相对更为困难。

7.5 JVM参数调整

解决了网络上面的不稳定因素,HBase的性能又得到进一步的提高,随之也带来了另外的问题。

7.5.1 现象

根据应用反应,HBase会阶段性出现性能下降,导致应用数据写入缓慢,造成应用端的数据堆积,这又是怎么回事?经过一系列改善后HBase的系统较之以前有了大幅度增长,怎么还会出现数据堆积的问题?为什么会阶段性出现?

HBase 原理、设计与优化实践

HBase流量统计

从上图看,HBase平均流量QPS基本能达到12w,但是每过一段时间,流量就会下降到接近零点,同时这段时间,应用会反应数据堆积。

7.5.2 原因

这个问题定位相对还是比较简单,结合HBase的日志,很容易找到问题所在:

org.apache.hadoop.hbase.util.Sleeper – We slept 41662ms instead of 3000ms, this is likely due to a long garbage collecting pause and it’s usually bad

通过上述日志,基本上可以判定是HBase的某台RegionServer出现GC问题,导致了服务在很长一段时间内禁止访问。

HBase通过一系列的调整后,整个系统的吞吐量增加了好几倍,然而JVM的堆大小没有进行相应的调整,整个系统的内存需求变大,而虚拟机又来不及回收,最终导致出现Full GC

7.5.3 解决

GC问题导致HBase整个系统的请求下降,通过适当调整JVM参数的方式,解决HBase RegionServer的GC问题。

7.5.4 建议

对于HBase来说,本身不存在单点故障,即使宕掉1,2台RegionServer,也只是使剩下几台的压力有所增加,不会导致整个集群服务能力下降很多。但是,如果其中某台RegionServer出现Full GC问题,那么这台机器上所有的访问都会被挂起,客户端请求一般都是batch发送的,rowkey的随机分布导致部分请求会落到该台RegionServer上,这样该客户端的请求就会被阻塞,导致客户端无法正常写数据到HBase。所以,对于HBase来说,宕机并不可怕,但长时间的Full GC是比较致命的,配置JVM参数的时候,尽量要考虑避免Full GC的出现。

8、后记

经过前面一系列的优化,目前Datastream的这套HBase线上环境已经相当稳定,连续运行几个月都没有任何HBase层面由于系统性能不稳定导致的报警,平均性能在各个时间段都比较稳定,没有出现过大幅度的波动或者服务不可用等现象。

Refer:

[1] HBase原理和设计

[2] HBase优化实战

[3] HBase 数据库检索性能优化策略

https://www.ibm.com/developerworks/cn/java/j-lo-HBase/

[4] 一种基于HBase表的条件查询优化方法

http://www.google.com/patents/CN103646073A?cl=zh

[5] HBase 实战(2)–时间序列检索和面检索的应用场景实战

http://www.cnblogs.com/mumuxinfei/p/3869998.html

[6] HBase性能优化方法总结(一):表的设计

http://www.cnblogs.com/panfeng412/archive/2012/03/08/hbase-performance-tuning-section1.html

[7] 日志系统之HBase日志存储设计优化

http://blog.csdn.net/yanghua_kobe/article/details/46482319

[8] HBase性能优化方法总结

http://zqhxuyuan.github.io/2015/12/16/2015-12-16-HBase-Optimize/

© 版权声明
THE END
喜欢就支持一下吧
点赞7 分享
评论 抢沙发
头像
欢迎您留下宝贵的见解!
提交
头像

昵称

取消
昵称表情代码图片